If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-16x+0.5=0
a = 16; b = -16; c = +0.5;
Δ = b2-4ac
Δ = -162-4·16·0.5
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{14}}{2*16}=\frac{16-4\sqrt{14}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{14}}{2*16}=\frac{16+4\sqrt{14}}{32} $
| 3x-2(x-2)=4x-(5x-1) | | X-1(2x+10)=144 | | 6(-x+2)-6=5(-x-1)-3x | | 7(-x+2)-6x=5(-x-1)=3x | | 3/x=9/3x+20 | | 2.9=1.73x-x | | d-4/3=2 | | 39-9t=4t | | 3x+3=6x-12= | | 17x-14x+5x-4=180 | | 6y-3(2y+6)=-6 | | 3x-5=5x-14 | | Y=466.51e | | Y=6E+06x^-1.908 | | 50-10*2=x | | K=10r-19 | | x=4.180-x | | -8(-2x-3)=6-x | | -8x(-2x-3)=6-x | | 24+n=51 | | 17+43=n | | 17+2x+x=172 | | 5a(2a+7)=0 | | 2(9x-5)=3(x+16) | | 8(p-1)-2(p-5)=p-5 | | 5.6x=12 | | 17b-7b=b+18 | | 5a+7=2a+4 | | 4.9t^2-42.63t-12.5=0 | | -100-20=k | | 0=(-10)x1 | | 0=-10x1 |